Skip to content Skip to navigation

Hemamala Karunadasa

Hemamala Karunadasa

Assistant Professor of Chemistry

About

Assistant Professor of Chemistry Hemamala Karunadasa works with colleagues in materials science, geology, applied physics, and more to drive the discovery of new materials with applications in clean energy. Using the tools of synthetic chemistry, her group designs hybrid materials that couple the structural tunability of organic molecules with the diverse electronic and optical properties of extended inorganic solids. This research targets materials such as sorbents for capturing environmental pollutants, electrodes for rechargeable batteries, phosphors for solid-state lighting, and absorbers for solar cells. They also design discrete molecular centers as catalysts for activating small molecules relevant to clean energy cycles.

Hemamala Karunadasa studied chemistry and materials science at Princeton University (A.B. with high honors 2003; Certificate in Materials Science and Engineering 2003), where her undergraduate thesis project with Professor Robert J. Cava examined geometric magnetic frustration in metal oxides. She moved from solid-state chemistry to solution-state chemistry for her doctoral studies in inorganic chemistry at the University of California, Berkeley (Ph.D. 2009) with Professor Jeffrey R. Long. Her thesis focused on heavy atom building units for magnetic molecules and molecular catalysts for generating hydrogen from water. She continued to study molecular electrocatalysts for water splitting during postdoctoral research with Berkeley Professors Christopher J. Chang and Jeffrey R. Long at the Lawrence Berkeley National Lab. She further explored molecular catalysts for hydrocarbon oxidation as a postdoc at the California Institute of Technology with Professor Harry B. Gray. She joined the Stanford Chemistry Department faculty in September 2012. Her research explores solution-state routes to new solid-state materials. She was recently awarded the NSF CAREER award and Alfred P. Sloan Foundation Fellowship, among other honors.

Professor Karunadasa’s lab at Stanford takes a molecular approach to extended solids. Lab members synthesize organic, inorganic and hybrid materials using solution- and solid-state techniques, including glovebox and Schlenk-line methods, and determine the structures of these materials using powder- and single-crystal x-ray diffraction. Lab tools also include a host of spectroscopic and electrochemical probes, imaging methods, and film deposition techniques. Group members further characterize their materials under extreme environments and in operating devices to tune new materials for diverse applications in renewable energy.

Please visit the lab website for more details and recent news.

Appointments

Assistant Professor, Chemistry

Honors & Awards

Terman Faculty Fellowship, Stanford University (2015-2018)
Sloan Fellowship, Alfred P. Sloan Foundation (2015)
CAREER Award, National Science Foundation (2014)
ICCC41 Rising Star Award, 41st International Conference on Coordination Chemistry (2014)
Thieme Chemistry Journal Award, Thieme Chemistry Journal (2013)
Gabilan Junior Faculty Fellow, Stanford University (2012-2015)
BP Postdoctoral Fellowship, California Institute of Technology (2011-2012)
Graduate Fellowship, Tyco Electronics (2006-2007)
Outstanding Graduate Student Instructor Award, University of California, Berkeley (2006-2007)
Outstanding Undergraduate Thesis in Inorganic Chemistry, Princeton University (2003)

Boards, Advisory Committees, Professional Organizations

Editorial Advisory Board Member, Inorganic Chemistry (2016 - Present)

Professional Education

Postdoc, California Institute of Technology, Molecular catalysts for activating hydrocarbons (2011)
Postdoc, University of California, Berkeley and Lawrence Berkeley National Lab, Molecular catalysts for generating hydrogen from water (2010)
PhD, University of California, Berkeley, Inorganic Chemistry (2009)
AB, Princeton University, Chemistry (2003)
Certificate, Princeton University, Materials Science and Engineering (2003)

Featured Publications